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1. F o r m u l a t i o n  of  t h e  P r o b l e m .  One method of closing the system of equations describing turbulent 
flow is that of using the relation between the fourth- and second-order correlation moments according to the 
hypothesis of zero values of fourth-order cumulants [1, 2]: 

I ! I ! - = m n  _ (uiUjUmUn) Mij MiiM mn Z M•M 7 + M~M'~ (1.1) 

(the subscripts refer to the first time point and the superscripts to the second). The same hypothesis can be 
expressed in terms of the Fourier transforms corresponding to the fourth- and second-order moments [2, 3]: 

OO OO 

EiT"(k)= f Eim(k-k')Ei '(k ')dk'+ f Ein(k-k ')Eim(k-k ')dk' .  
- - 0 0  - - 0 0  

The true probability-density distribution of velocity fluctuations is substituted by a model probability 
density function that could be yet a good approximation for calculating certain moments if the region of its 
negative values has little effect on the results of calculating these moments. 

Millionshchikov's hypothesis was experimentally verified in [4] for isotropic flow behind a grid. The 
experimental data were found to satisfy this hypothesis within the measurement error. 

The present paper is aimed at comparing experimental relations for developed turbulent pipe flows. 
2. E x p e r i m e n t a l  S e t u p  and  M e a s u r i n g  E q u i p m e n t .  The setup channel is a straight-line round 

pipe with diameter d = 0.06 m. The first part of the channel 6 m long is immovable and serves to form a 
developed symmetric turbulent flow that corresponds to a specified Reynolds number. The second part of the 
channel 1.5 m long can be rotated around the longitudinal axis. The flow is created by the air supply from 
a high-pressure pipeline through a heater and a receiver with a converging nozzle (contoured according to 
Vitoshinskii's relation) which ensures a flow-contraction ratio of 1 : 12. The room temperature is maintained in 
flow within 0.1 ~ The flow temperature is controlled by the thermocouple connected to a VK 2-20 voltmeter. 

Hot-wire anemometer equipment of DISA Company (series M) was used to measure the flow velocity. 
Signal linearization was performed. A 55P 11 straight general-purpose probe (wire length 1.25 mm and diameter 
5 #m) was placed at various distances from the axis along the horizontal radius ~ of the cross section of the 
pipe. The wire was directed vertically along" the circumferential component of the flow velocity. The probe is 
not sensitive to the velocity component along the wire. Therefore, only the signal from the velocity component 
normal to the wire is taken into account. The wire was placed at a distance of 15 mm from the exit section 
inside the pipe ~1. 

The time realizations of the signals were registered by a digital tape-recorder, and their processing was 
performed on a Plurimat-S computer. To obtain one value of the time correlation functions, 153,000 signal 
samples with a sampling frequency of 10 kHz were used. 
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The data  for the mean velocity U0 = 10 m/sec on the axis are presented below. The Reynolds number 
is Re = Uod /v  = 4.2. 104 and the kinematic viscosity is u =1.42 �9 10 -s  m2/sec. The flow swirl level is 
characterized by the parameter H = V ~  where V ~ is the circumferential rotation velocity of the pipe wall. 

One-point moments of the longitudinal-velocity fluctuation for moments of various orders were 
measured for verification of the technique. The results are compared with the literature data: the data of 
[5-10] for second-order moments, [5, 7, 9] for third-order moments, [5, 7] for fourth-order moments, and [7] 
for fifth- and sixth-order moments. The comparison and the experimental results in tabulated graphical forms 
are presented in [11-13]. 

An z-array probe was used to measure the circumferential component of the mean velocity and the 
shear stress. 

With increasing flow swirl, the axial-velocity profiles become more and more full, which is due to 
reduction in turbulent friction. The circumferential velocity is negligible in the central part of the flow and 
increases abruptly near the pipe walls. Increasing swirl reduces the values of all moments, skewness and 
kurtosis coefficients practically in the entire cross section of the flow within the dimensionless radius of from 
zero to 0.8. The skewness is shown in Fig. 1 as a function of the pipe radius for various values of the swirl 
parameter. Figure 2 shows curves of the kurtosis coefficient. The fifth- and sixth-order moments exhibit a 
similar behavior. The probability distributions approach the Gaussian curve. The agreement of data is fairly 
satisfactory and is indirect evidence that the accuracy of the measurements is acceptable. 

3. T i m e  C o r r e l a t i o n  Func t ions .  The quadruple [of the type M11 (~, ~I, r)] and double time 
correlation functions were examined. Direct use of Millionshchikov's hypothesis in the relation between 
correlation functions is known to lead to an error for r = 0, because the true value of the kurtosis coefficient 
in an inhomogeneous, non-isotropic flow differs from the Gaussian one. However, the hypothesis can be used 
in spectral form only for the Fourier transform of the cumulant function, i.e., for expression (1.1). Thus, an 
attempt is made to use Millionshchikov's hypothesis in somewhat changed form for the moment functions as 
well. The expression M ~  ( r ) -  (Mll (0)) 2 is normalized to the value for r = 0, and the approximate expression 
for the right-hand side 2(M~ (r)) 2 is normalized to the approximate term (To - 1)(Mll (0)) 2 = 2(M11 (0)) 2. Here 
T = (u~)/(u212,  and for the Gaussian distribution To = 3. Then one can find [M~';(r)]0 from the second-order 
moments M 1 (r) and the kurtosis coefficient measured at the point under consideration: 

[M~(r)]0 - (MI,(0)) 2 ~ ( T -  t ) (M~(r))  2. (3.1) 

The error for intermediate values of r,  or, what is the same, for intermediate frequency values that 
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TAB~.E I 

0 
0.2 
0.4 
0.6 
0.8 
0.9 

0 
0.2 
0.4 
0.6 
0.8 
0.9 

0 
0.2 
0.4 
0.6 
0.8 
0.9 

(U), m/sec 

10 
9.78 
9.33 
8.69 
7.76 
6.98 

(ui), In2/sec 2 

0.128 
0.178 
0.286 
0.425 
0.579 
0.670 

T 

3.39 
3.42 
3.10 
2.86 
2.73 
2.75 

I I = 0  

104~, In 

1.71 
1.63 
1.46 
1.28 
1.08 
0.94 

103A, m 

2.64 
2.81 
2.88 
2.65 
2.25 
1.81 

102A, m 

0.97 
1.22 
1.53 
1.53 
1.28 
0.93 

(U), m/sec 

10 
9.88 
9.40 
8.64 
7.32 
6.28 

(ul) ,mi/sec 2 

0.059 
0.090 
0.166 
0.276 
0.407 
0.496 

II = 0.3 

T 1041"/, m 

3.27 2.03 
3.33 1.89 
3.07 1.59 
2.95 1.30 
2.87 1.04 
2.88 

103A, m 

2.72 
2.85 
2.74 
2.33 
1.82 

102A, In 

0.85 
1.05 
1.20 
1.08 
0.82 

{U), m/sec 

10.3 
10.2 
9.90 
9.11 
7.62 
6.38 

(u~),m2/sec 2 

O.035 
0.050 
0.086 
0.152 
0.286 
0.390 

H = 0.6 

T 104y, m 

3.10 2.34 
3.15 2.20 
2.99 1.85 
3.06 1.42 
3.03 1.01 
3.08 0.80 

103A, m 

2.81 
2.96 
2.82 
2.20 
1.46 
1.02 

102A, m 

0.77 
0.93 
1.03 
0.82 
0.50 
0.30 

] , ,Hz  f^ , t tz  

9300 163 
9500 127 

10200 97 
10800 91 
11400 96 
118001 119 

(V~), m/sec 

0 

0.15 
0.40 
1.0 
1.5 

(V~), m/sec 

0 

0.14 
0.51 
1.51 
2.7 

correspond to the energetic region of the spectrum, can be determined using the relations for spectral 
distributions. Figure 3 shows the normalized spectral frequency distributions for ~ = 0, 0.2, 0.4, 0.6, 0.8, 
and 0.9 (curves i-6) and II = 0 and 0.3 for fourth-order moments M I I ( r ) -  (Mn(0))2: 

r = Eli(f) 
O0 

iT  - 1) f E , , ( / -  / ' ) E H ( f ' )  df' 
- - 0 0  

The data on the flow are listed in Table 1. Taylor's hypothesis is used: the wave number is k = 27rf/(U), 

2 r f  (U) (U) 
A = , / A -  2rr/ 2 rA '  

where A is the longitudinal integral correlation scale, A is Taylor's microscale, and 7? is Kolmogorov's 
microscale. One can see that, within an error of +10% in the energetic frequency range, the experimental 
spectral distributions in thus normalized form agree fairly well with those calculated using formula (3.1) 
with Millionshchikov's approximation. As is seen from the data for one-point functions in Fig. 1, the kurtosis 
coefficient (T - 3) decreases by a factor of 3-4 in the flow at the exit of the rotating section of the pipe, and 
the error in determining the fourth-order moment also decreases. 

Figure 4 shows the measured functions F1 and F2 (F2 is an approximate dependence shown by the 
upper curve in each set) versus time for radial points ~ = 0, 0.2, 0.4, and 0.6 (at 1] = 0 and 0.3): 

(MI (r)) 2 MII ( r ) -  (M,,(0)) 2 
F1 - (Mn(0))2,  F2 = M11(0)_ (Ml1(0)) 2. 
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As the value of (T - 3) decreases, the difference between the curves becomes smaller. The large relative 
difference is retained for large times for which the function values are small. The difference between the 
moments M~(r) and [M11(r)]0 is within 20% for II = 0 (~ = 0 and 0.8) and decreases to 5% for flow regimes 
with rotation of the pipe section. 

Thus, it is found that 
when the pipe is rotated, the skewness and kurtosis coefficients characterizing the deviation of the 

distribution function from the Gaussian curve decrease in absolute value; 
- -  in the developed turbulent pipe flow the fourth-order moments differ from Millionshchikov's 

approximations to the same extent as the kurtosis coefficient differs from the Gaussian value; 
- -  an at tempt to represent the spectral dependences for the time correlation functions in a special 

example with normalization using the true values of kurtosis in the flow leads to an approximate representation 
of the fourth-order time correlation moment using the second-order time correlation moment and the true 
value of the kurtosis coefficient as an expression with correct limit values at zero and large values of time and 
with an error of about 10-20% in the intermediate interval. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 93-013- 
17632) and by the "Fizmat" Program of the State Committee of Institutes of Higher Education. 
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